3.327 \(\int \frac{\tan ^4(e+f x)}{\sqrt{a+b \tan ^2(e+f x)}} \, dx\)

Optimal. Leaf size=125 \[ -\frac{(a+2 b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{2 b^{3/2} f}+\frac{\tan ^{-1}\left (\frac{\sqrt{a-b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{f \sqrt{a-b}}+\frac{\tan (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 b f} \]

[Out]

ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]]/(Sqrt[a - b]*f) - ((a + 2*b)*ArcTanh[(Sqrt[b]*Ta
n[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/(2*b^(3/2)*f) + (Tan[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/(2*b*f)

________________________________________________________________________________________

Rubi [A]  time = 0.139177, antiderivative size = 125, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {3670, 479, 523, 217, 206, 377, 203} \[ -\frac{(a+2 b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{2 b^{3/2} f}+\frac{\tan ^{-1}\left (\frac{\sqrt{a-b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{f \sqrt{a-b}}+\frac{\tan (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 b f} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^4/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]]/(Sqrt[a - b]*f) - ((a + 2*b)*ArcTanh[(Sqrt[b]*Ta
n[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/(2*b^(3/2)*f) + (Tan[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/(2*b*f)

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 479

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(2*n
- 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q) + 1)), x] - Dist[e^(2*n)
/(b*d*(m + n*(p + q) + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m +
 n*(q - 1) + 1) + b*c*(m + n*(p - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d
, 0] && IGtQ[n, 0] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tan ^4(e+f x)}{\sqrt{a+b \tan ^2(e+f x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\tan (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 b f}-\frac{\operatorname{Subst}\left (\int \frac{a+(a+2 b) x^2}{\left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 b f}\\ &=\frac{\tan (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 b f}+\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}-\frac{(a+2 b) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 b f}\\ &=\frac{\tan (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 b f}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-(-a+b) x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{f}-\frac{(a+2 b) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{2 b f}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{a-b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{\sqrt{a-b} f}-\frac{(a+2 b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{2 b^{3/2} f}+\frac{\tan (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 b f}\\ \end{align*}

Mathematica [C]  time = 6.23047, size = 713, normalized size = 5.7 \[ \frac{\tan (e+f x) \sqrt{\frac{a \cos (2 (e+f x))+a-b \cos (2 (e+f x))+b}{\cos (2 (e+f x))+1}}}{2 b f}-\frac{\frac{4 b^2 \sqrt{\cos (2 (e+f x))+1} \sqrt{\frac{(a-b) \cos (2 (e+f x))+a+b}{\cos (2 (e+f x))+1}} \left (\frac{\sin ^4(e+f x) \csc (2 (e+f x)) \sqrt{-\frac{a \cot ^2(e+f x)}{b}} \sqrt{-\frac{a (\cos (2 (e+f x))+1) \csc ^2(e+f x)}{b}} \sqrt{\frac{\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}}}{\sqrt{2}}\right ),1\right )}{4 a \sqrt{\cos (2 (e+f x))+1} \sqrt{(a-b) \cos (2 (e+f x))+a+b}}-\frac{\sin ^4(e+f x) \csc (2 (e+f x)) \sqrt{-\frac{a \cot ^2(e+f x)}{b}} \sqrt{-\frac{a (\cos (2 (e+f x))+1) \csc ^2(e+f x)}{b}} \sqrt{\frac{\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} \Pi \left (-\frac{b}{a-b};\left .\sin ^{-1}\left (\frac{\sqrt{\frac{(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt{2}}\right )\right |1\right )}{2 (a-b) \sqrt{\cos (2 (e+f x))+1} \sqrt{(a-b) \cos (2 (e+f x))+a+b}}\right )}{\sqrt{(a-b) \cos (2 (e+f x))+a+b}}-\frac{b (a+b) \sin ^4(e+f x) \csc (2 (e+f x)) \sqrt{\frac{(a-b) \cos (2 (e+f x))+a+b}{\cos (2 (e+f x))+1}} \sqrt{-\frac{a \cot ^2(e+f x)}{b}} \sqrt{-\frac{a (\cos (2 (e+f x))+1) \csc ^2(e+f x)}{b}} \sqrt{\frac{\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}}}{\sqrt{2}}\right ),1\right )}{a ((a-b) \cos (2 (e+f x))+a+b)}}{b f} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^4/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-((-((b*(a + b)*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*Sqrt[-((a*Cot[e + f*x]^2)/b)]*
Sqrt[-((a*(1 + Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/
b]*Csc[2*(e + f*x)]*EllipticF[ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1]*
Sin[e + f*x]^4)/(a*(a + b + (a - b)*Cos[2*(e + f*x)]))) + (4*b^2*Sqrt[1 + Cos[2*(e + f*x)]]*Sqrt[(a + b + (a -
 b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*((Sqrt[-((a*Cot[e + f*x]^2)/b)]*Sqrt[-((a*(1 + Cos[2*(e + f*x)])
*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*Csc[2*(e + f*x)]*EllipticF[Ar
cSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1]*Sin[e + f*x]^4)/(4*a*Sqrt[1 + Co
s[2*(e + f*x)]]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]]) - (Sqrt[-((a*Cot[e + f*x]^2)/b)]*Sqrt[-((a*(1 + Cos[2*
(e + f*x)])*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*Csc[2*(e + f*x)]*E
llipticPi[-(b/(a - b)), ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1]*Sin[e
+ f*x]^4)/(2*(a - b)*Sqrt[1 + Cos[2*(e + f*x)]]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]])))/Sqrt[a + b + (a - b)
*Cos[2*(e + f*x)]])/(b*f)) + (Sqrt[(a + b + a*Cos[2*(e + f*x)] - b*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*T
an[e + f*x])/(2*b*f)

________________________________________________________________________________________

Maple [A]  time = 0.03, size = 165, normalized size = 1.3 \begin{align*}{\frac{\tan \left ( fx+e \right ) }{2\,fb}\sqrt{a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2}}}-{\frac{a}{2\,f}\ln \left ( \sqrt{b}\tan \left ( fx+e \right ) +\sqrt{a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2}} \right ){b}^{-{\frac{3}{2}}}}-{\frac{1}{f}\ln \left ( \sqrt{b}\tan \left ( fx+e \right ) +\sqrt{a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2}} \right ){\frac{1}{\sqrt{b}}}}+{\frac{1}{f{b}^{2} \left ( a-b \right ) }\sqrt{{b}^{4} \left ( a-b \right ) }\arctan \left ({ \left ( a-b \right ){b}^{2}\tan \left ( fx+e \right ){\frac{1}{\sqrt{{b}^{4} \left ( a-b \right ) }}}{\frac{1}{\sqrt{a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2}}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^(1/2),x)

[Out]

1/2*(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/b/f-1/2/f*a/b^(3/2)*ln(b^(1/2)*tan(f*x+e)+(a+b*tan(f*x+e)^2)^(1/2))-1/
f*ln(b^(1/2)*tan(f*x+e)+(a+b*tan(f*x+e)^2)^(1/2))/b^(1/2)+1/f*(b^4*(a-b))^(1/2)/b^2/(a-b)*arctan(b^2*(a-b)/(b^
4*(a-b))^(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (f x + e\right )^{4}}{\sqrt{b \tan \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tan(f*x + e)^4/sqrt(b*tan(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [A]  time = 8.43644, size = 1569, normalized size = 12.55 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/4*(2*sqrt(-a + b)*b^2*log(-((a - 2*b)*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x +
 e) - a)/(tan(f*x + e)^2 + 1)) - (a^2 + a*b - 2*b^2)*sqrt(b)*log(2*b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2
+ a)*sqrt(b)*tan(f*x + e) + a) - 2*sqrt(b*tan(f*x + e)^2 + a)*(a*b - b^2)*tan(f*x + e))/((a*b^2 - b^3)*f), -1/
2*(sqrt(-a + b)*b^2*log(-((a - 2*b)*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x + e) -
a)/(tan(f*x + e)^2 + 1)) - (a^2 + a*b - 2*b^2)*sqrt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f*x
+ e))) - sqrt(b*tan(f*x + e)^2 + a)*(a*b - b^2)*tan(f*x + e))/((a*b^2 - b^3)*f), 1/4*(4*sqrt(a - b)*b^2*arctan
(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x + e))) + (a^2 + a*b - 2*b^2)*sqrt(b)*log(2*b*tan(f*x + e)^2
- 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x + e) + a) + 2*sqrt(b*tan(f*x + e)^2 + a)*(a*b - b^2)*tan(f*x +
e))/((a*b^2 - b^3)*f), 1/2*(2*sqrt(a - b)*b^2*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x + e))) +
 (a^2 + a*b - 2*b^2)*sqrt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f*x + e))) + sqrt(b*tan(f*x +
e)^2 + a)*(a*b - b^2)*tan(f*x + e))/((a*b^2 - b^3)*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{4}{\left (e + f x \right )}}{\sqrt{a + b \tan ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**4/(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(tan(e + f*x)**4/sqrt(a + b*tan(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (f x + e\right )^{4}}{\sqrt{b \tan \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^4/sqrt(b*tan(f*x + e)^2 + a), x)